Life Cycle Analysis of HWS Gates Road Solar Farm

A Focus on Carbon Emissions Owen Speth, '21 December 2020

What is Life Cycle Assessment?

- Purpose: quantify the material an energy inputs needed to create a product and the environmental impact of those inputs
- Process

Goal and Scope Definition

Determine the intended application and bounds of the LCA Inventory Analysis

Collect and compile data on the inputs of the product being analyzed within the defined scope Impact Assessment

Determine the environmental impacts of those inputs

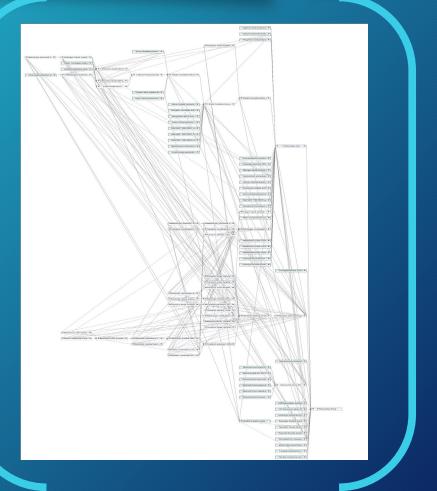
("Life Cycle Assessment", 2007)

Open LCA

 OpenLCA: open source software that allows its users to upload existing LCA <u>databases</u> and compile that data into <u>product systems</u> using <u>flows</u> and <u>processes</u>

- The physical materials used to create a certain product
- Can be raw material/energy, a pollutant, or a combination of previous flows

- The collection of physical materials that are used to create a new flow
- Each flow within the bounds of an LCA that is not raw material or emissions <u>should</u> have an accompanying process



 All of the flows involved in the making of a final product and their connection to one another

(Ciroth et al., 2020)

Open LCA cont.

Preexsting Flows						Pro	ocess
FIUWS							
Inputs							
inputs							
Flow	Category	Amount	Unit	Costs/Re	Uncertai	Avoided	Prov der
F. Heat, at cogen with ignitio	Technosphere Flows/	46.50000	📼 MJ		none		
F. Hydrochloric acid	Organic chemicals/n	0.38200	🚥 kg		none		P Hydr
F. Hydrogen, liquid, synthesis	31-33: Manufacturin	0.02390	🚥 kg		none		P Hydr
F. Silicone plant/RER/I U	Systems/Other syste	2.84000E-12	💷 ltem(s)		none		P (Prox
F.º Sodium hydroxide	Organic chemicals/n	0.12400	🚥 kg		none		P Sodiu
F.º tetrafluoroethylene	Organic chemicals/n	0.00017	🚥 kg		none		P tetraf
F.º Transport	Materials production	2.15000	📟 tkm		none		P Artic
🗛 Transport, train, diesel pow	48-49: Transportation	0.02480	💷 t*km		none		P Trans
F.º Water, completely softene	EF Miscellaneous	18.50000	📟 kg		none		P Wate
Outputs							
Flow	Category	Amount	Unit	Costs/Re	Uncertai	Avoided	Provider
F.º 2 Electronic Grade (Off G	Jinko Panel Product	1.00000	🚥 kg		none		
						Proc	luct_
	/ Flow					Syst	

LCIA Methods

LCIA Methods are the coefficients and calculations necessary to complete an impact assessment

Units

mpact category	ning (GWP100a)			
Flow	Category	Flow property	Factor	Unit
Butane, 1,1,1,3,3-pentafluo	Emission to air/unspecified	Mass	804.0	kg CO2 eg/kg
Fe Butane, perfluoro-	Emission to air/high populati	Mass	9200.0	kg CO2 eg/kg
Fa Butane, perfluoro-	Emission to air/low populatio	Mass	9200.0	kg CO2 eg/kg
Fa Butane, perfluoro-	Emission to air/low populatio			kg CO2 eq/kg
Fe Butane, perfluoro-	Emission to air/lower stratosp	Mass	9200.0	kg CO2 eq/kg
Fe Butane, perfluoro-	Emission to air/unspecified	Mass	9200.0	kg CO2 eq/kg
Fo Butane, perfluorocyclo-, PF	Emission to air/high populati	Mass	9540.0	kg CO2 eg/kg
Butane, perfluorocyclo-, PF	Emission to air/low populatio	Mass	9540.0	kg CO2 eq/kg
Fe Butane, perfluorocyclo-, PF	Emission to air/low populatio	Mass	9540.0	kg CO2 eg/kg
Fe Butane, perfluorocyclo-, PF	Emission to air/lower stratosp	Mass	9540.0	kg CO2 eq/kg
Fe Butane, perfluorocyclo-, PF	Emission to air/unspecified	Mass	9540.0	kg CO2 eq/kg
Fe Butanol, 2,2,3,3,4,4,4-hepta	Emission to air/unspecified	Mass	34.0	kg CO2 eq/kg
Fe Butanol, 2,2,3,3,4,4,4-hepta	Emission to air/unspecified	Mass	16.0	kg CO2 eq/kg
Fe Butanol, 2,2,3,4,4,4-hexaflu	Emission to air/unspecified	Mass	17.0	kg CO2 eq/kg
Fø Carbon dioxide	Emission to air/high populati	Mass	1.0	kg CO2 eq/kg
Fø Carbon dioxide	Emission to air/low populatio	Mass	1.0	kg CO2 eq/kg
Fø Carbon dioxide	Emission to air/low populatio	Mass	1.0	kg CO2 eq/kg
Fø Carbon dioxide	Emission to air/lower stratosp	Mass	1.0	kg CO2 eq/kg
Fø Carbon dioxide	Emission to air/unspecified	Mass	1.0	kg CO2 eq/kg
Fø carbon dioxide (fossil)	Emissions to air/Emissions to	Mass	1.0	kg CO2 eq/kg
Fa carbon dioxide (fossil)	Emissions to air/Emissions to	Mass	1.0	kg CO2 eq/kg

 This LCA uses the CML 2001 Baseline method, developed by the Institute for Environmental Sciences at Leiden University in the Netherlands

> In this example CML-baseline uses the Global Warming Potential of CO2 over 100 years as the unit to assess the impact of all GHGs. Each GHG is multiplied by a specific coefficient to reflect its potential to pollute.

Flows

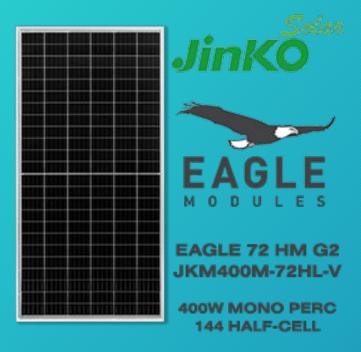
Coefficients

Databases

- LCA databases are comprised of various flows and processes that can be connected in anyway the user desires. This project uses two databases
 - 1. Product Environmental Footprints: a database created as part of the European Commission's Single Market for Green Products initiative.
 - 2. USLCI: a database created by the National Renewable Energy Laboratory in the US

European Commission

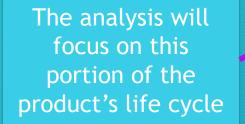
PEF

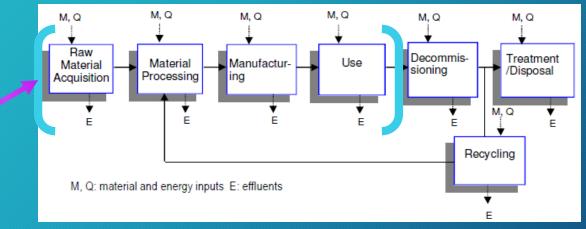


HWS Gates Road Solar Farm

- 8600 multi-crystalline solar panels
 - Each panel is ~1.94 m^2
 - ~3,800 produced in Vietnam
 - ~4,800 produced in Poland
- Each panel is produced by the Jinko Solar Company, a Chinese panel manufacturer
 - Eagle 72, 320-340 watt model
- The farm also contains 37 50/60kw solar inverters
 - Each is produced by Chint Power Systems, a North American energy company
 - All inverters are made in China

Goal




- To provide an academic audience with a <u>descriptive analysis</u> of the carbon emissions resulting from the Gates Road Solar farm's construction
 - The solar farm is not meant to be changed, instead the purpose of this LCA is to educate about the unseen environmental problems associated with a solar farm's production

Scope and Data

• A focus on GHGs

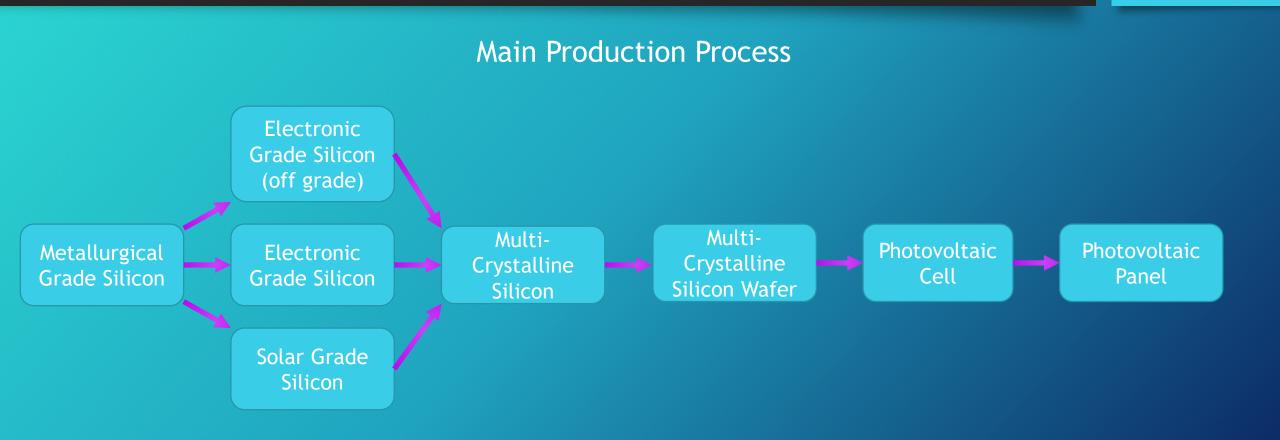
- Only impact assessments on emissions with a global warming potential will be provided
- Cradle to use
 - The disposal of the solar installation is not accounted for

(Frischknecht et al., 2015)

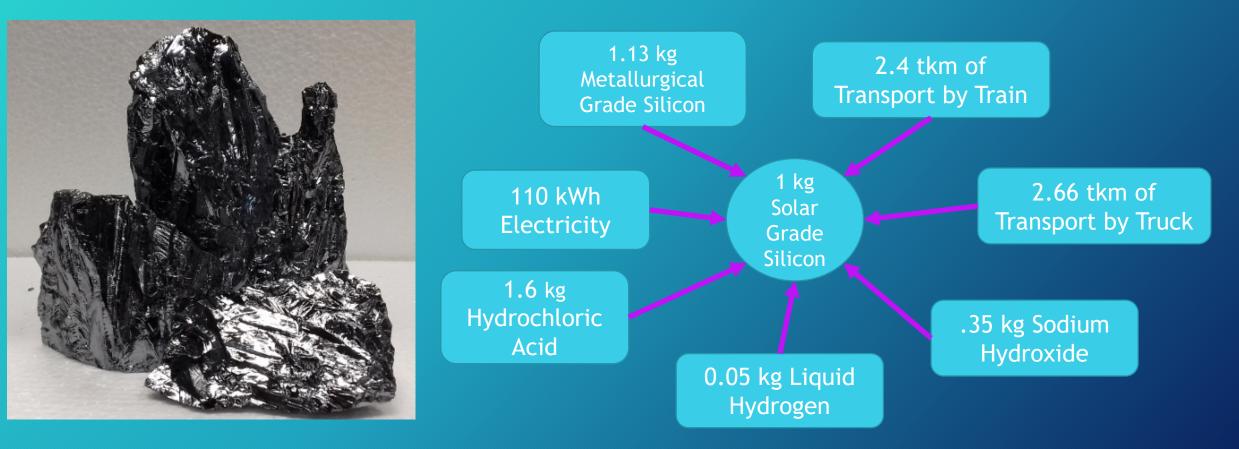
- Data on panel production is from the IEA's 2015 report on the life cycle inventories and assessments of photovoltaic systems
- Data on Polish and Vietnamese electricity mixes is from iea.org

P0	nzn	F I	ectricity	M1X
	(IJII		Certercy	

Energy Source	Percent
Coal	73.7%
Wind	9.2%
Natural Gas	9.2%
Biomass	4.3%
Hydropower	1.6%
Oil	1.1%
Other	0.9%


Vietnamese Electricity Mix

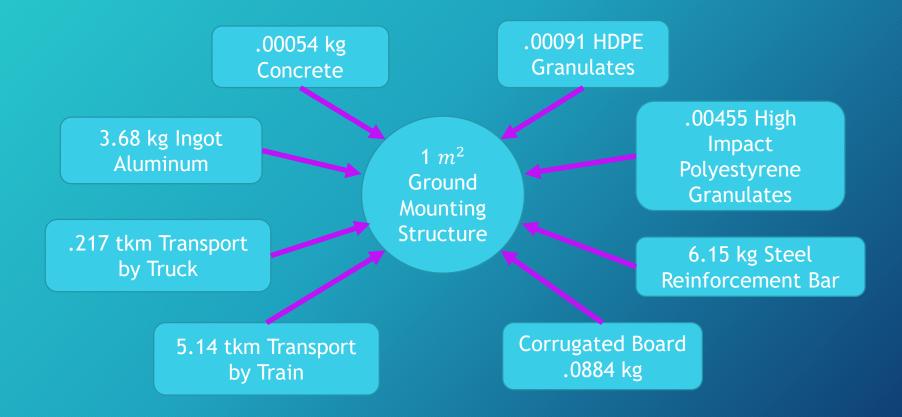
Energy Source	Percent
Hydropower	44.8%
Coal	34.1%
Natural Gas	20.7%
Oil	0.4%


• Notable missing/cutoff flows

- Charcoal
- Graphite
- Helium
- Brass
- Low-Alloyed Steel
- Copper
- Polyethylene Terepthalate
- Silicone Product
- Diesel, burned in building machine
- Ethylvinylacetate
- Isopropanol
- Wire Drawing
- Any disposal of physical waste (e.g. slag, hazardous waste, solid waste, etc.)

*The processes involved in the production of these flows were unavailable in both the Environmental Footprints and NREL databases

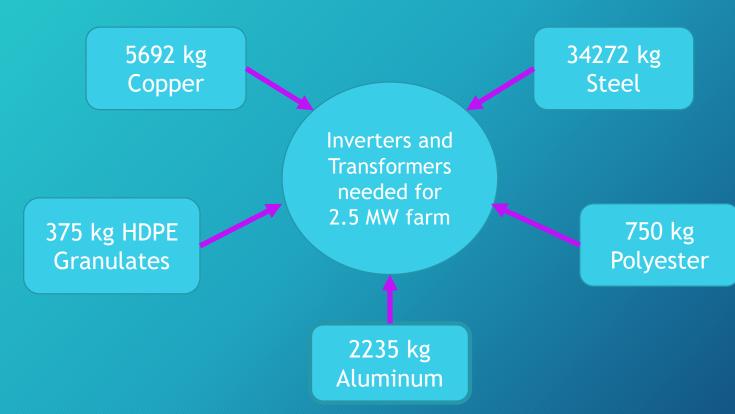
Solar Grade Silicon Example


Inventory Analysis: Ground Mounting Structure

- Data for ground mounting structures also comes from the IEA's 2015 report
- Notable missing/cutoff flows
 - Reinforcing Steel
 - Chromium Steel
 - Wire Drawing Process
 - Zinc Coating

Inventory Analysis: Ground Mounting Structure

Ground Mounting Structure Production Process



Inventory Analysis: Solar Inverters and Transformers

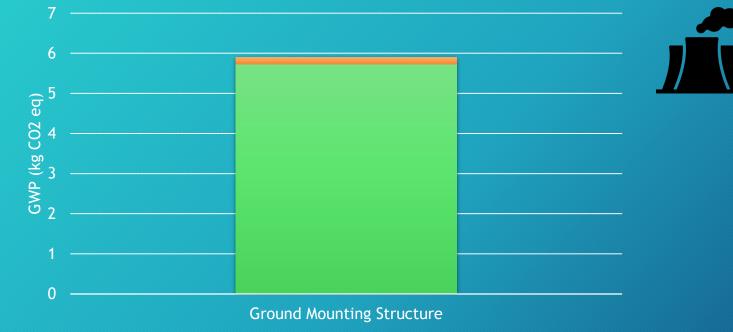
- Data is also from IEA's 2015 report on photovoltaic systems
- Due to scarce availability of life cycle data on inverters and transformers, the inventory data on this portion of the farm is derived from the 4.6 MW Springerville plant in Tucson, AZ
 - The data is scaled down to 2.5 MW to reflect the size of the Gates Road farm

Inventory Analysis: Solar Inverters and Transformers

Gates Road Inverter and Transformer System

Impact Assessment: Photovoltaic Panel

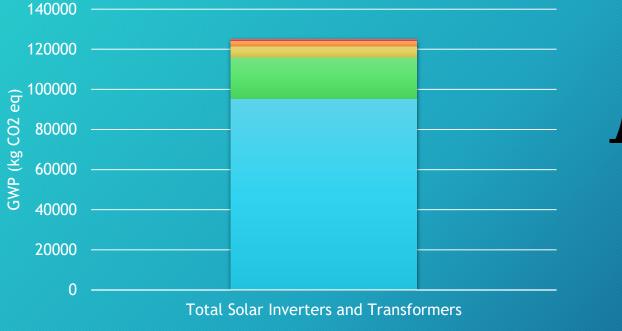
Global Warming Potential of Vietnamese and Polish Panels per Square Meter


Vietnamese Panel Total GWP 112.5 kg CO2 eq/m² panel

Polish Panel Total GWP 142.0 kg CO2 eq/m² panel

Impact Analysis: Ground Mounting Structure

Global Warming Potential of Ground Mounting Structure per Square Meter



* The unit for ground mounting structures is derived from the amount of material needed to support one square meter of pv panel

Steel reinforcement bar Other

Impact Analysis: Solar Inverters and Transformers

Global Warming Potential of Total Solar Inverters and Transformers

Total Inverters and Transformers 125,022.4 kg CO2 eq

Steel Sheet Aluminum Alloy (AlMg3) Copper Polyester Other

Impact Analysis: Total Farm

Panel Specifications

Panel area=1.94 m^2 Total Panel Area=16684 m^2 (Vietnames Panels=7372 m^2 and Polish Panels=9312 m^2) Expected Lifetime=25 years Expected Lifetime Generation=69.95GWh

Vietnamese Panels (112.5 kg CO2 eq/ m^2 + 5.9 kg CO2 eq/ m^2) x 7,372 m^2 = 872,845 kg CO2 eq Polish Panels

 $(142.0 \text{ kg CO2 eq}/m^2 + 5.9 \text{ kg CO2 eq}/m^2) \times 9312 m^2 =$ 1,377,245 kg CO2 eq

Impact Analysis: Per kWh

Panel Specifications

Expected Lifetime=25 years

Expected Lifetime Generation=69.95GWh

GWP OF ELECTRICITY FROM VARIOUS SOURCES

Grams CO2 eq/kWh 2,735,112,000 kg CO2 eq/69,950,000 kWh= ~**34 g CO2 eq/kWh**

- NREL estimates ~40 g CO2/kWh emitted using solar panels
- After 25 years the colleges will have avoided emitting 22,599,045 kg CO2 eq, equivalent to the emissions of...
 - 5,425 cars in one year

 7 days of electricity generation at the Greenidge Power-Plant

("Environmental Assessment", 2004)

Limitations

- Flows and processes from the NREL and EF databases may not represent Jinko's exact panel production process
 - Ex: electricity mixes may not match what is used at Jinko's factories in Poland and Vietnam
- Missing flows and processes means the impact analysis is slightly undervalued
- The values used for panel lifespan and lifetime electricity generation are estimations, and may be inaccurate
- The issue with cutoffs
 - This analysis assumes that all materials used in the production process would not have been made otherwise
 - There is no way to know that the production of these materials would have been avoided if the panels were not created

Sources

Ciroth, A, et al. "OpenLCA 1.10 Comprehensive User Manual." Feb. 2020.

"Environmental Assessment: Greenidge Multi-Pollutant Control Project." Aug. 2004.

Frischknecht, Rolf, et al. International Energy Agency, Upton, New York, 2015, Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems.

"Greenhouse Gas Emissions from a Typical Passenger Vehicle." *EPA*, Environmental Protection Agency, 10 May 2018, www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passengervehicle#:~:text=typical passenger vehicle?-,A typical passenger vehicle emits about 4.6 metric tons of,8,887 grams of CO2.

"Life Cycle Assessment: A Product Oriented Method for Sustainability Analysis." 2007.